
Journal of Engineering Physics and Thermophysics, Vol. 72, No. 1, 1999 

U L T R A F I L T R A T I O N  I N  A P L A N E  C H A N N E L  W I T H  

O N E  P E R M E A B L E  S U R F A C E  

V. I. Baikov and P. K. Znovets UDC 532.542 

A study is carried out to investigate unsteady-state concentration polarization in the case of laminar 

ultrafiltration in a plane channel with one permeable surface as a function of the selectivity properties of the 

membrane. 

At present membrane devices of various modifications are more and more widely used for separation of 

liquid systems I1, 2 ]. Devices with plane membrane elements located on one side of the channel are one of the 

modifications. Such devices are manufactured, for example, by the Romicon Company (USA) and others. 

The main factor that has a substantial negative effect on the characteristics of the ultrafiltration membrane 

process is concentration polarization, i.e., gel formation, which results in formation of a poorly permeable layer of 

high-molecular-weight compounds on the surface of the membrane. A search for optimum designs of membrane 
apparatuses seems a simplest and most efficient way to decrease the level of gel formation. For this purpose it is 

necessary to have a clear idea of the main relationships of the process that occurs in these devices. 

In [1 ] numerical methods were used to obtain some versions of the development of concentration 

polarization in a channel with one permeable wall. However, these results are not informative, since they cannot 

be used for analysis of and a search for an optimum version of ultrafiltration by broad variation of parameters. 

In the present work a semi-integral approach [3-5 ] was used to find an analytical solution of the problem 

of unsteady-state ultrafiltration in a channel with one permeable wall, which makes it possible to reveal the physical 

picture of the process and to find its main relationships. 
We will obtain the velocity distribution in a flow of a high-molecular-weight solution of liquids in a thin 

plane channel with one permeable wall under conditions of gel formation on the surface of the membrane. As a 

result of escape of some of the liquid through the membrane, the concentration of high-molecular-weight compounds 

on its surface will increase until it reaches the critical value of gel formation, and the membrane becomes covered 

with a layer of gel. This layer is a hindrance to penetration of the liquid through the membrane (see Fig. 1). 

The system of equations of motion and discontinuity that describes the process is represented in the form 

x 
1 p + VUyy 0 (1) 
p 

= 0, (2) 

with the boundary conditions 

21y=:= 0; 

A A 
f 

u x + Uy = 0 (3) 

V l y = f = -  Vf; Uly=zh=O; V[y=Zh=O. (4) 
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Fig. 1. Schematic liquid flow in a plane channel with one permeable surface 

with account for gel formation. 

It follows from Eq. (2) that P = P(x). Integrating Eq. (1) with account for boundary conditions (4), we 

find an expression for the longitudinal component of the velocity vector in the channel: 

~= h2 p; ( y - f Y2_ -- fY. I (s) 
/~ h 2h 2 J "  

The transverse component is determined from discontinuity equation (3), using the expression for the 
A 

component u for this purpose: 

^ 2 h 3 O [ ( 3 f  y2 3y ( 2 / -  y ) ) ]  v -  P'x 1 - - - +  ( 2 y - 3 1 )  + (6) 
3 lu Ox 2h 8h 3 4h 2 " 

Hence, the flow velocity through the membrane is equal to 

3 

In Eqs. (5) and (6) the unknown quantity P'x will be eliminated.  To do this, the mean flow rate is 

introduced: 

/ 

Then,  at the inlet to the channel at x -- 0 it is 

1 h 2 0 P [  (9) 
-~o = 3 /~ Ox I x=0" 

We integrate (7) with account for relation (9) and substitute the result into formulas (5) and (6). For  the 

components of the velocity vector we obtain 

A 3 

u 2h (1 - i /2h~  3 o h 2h i ) ' 
(10) 

^ 0 
v =  x 

(1 - f /2h) 3 
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x ( 2: / 
y2 3y (2]" - y) o y 3 Of (1 1 ) x 1 + 3 / +  ( - 3 / ) + _  + + 

4h 2 2h Ox 

Now, we consider the diffusion problem. For convenience in subsequent manipulations, we work with 
dimensionless quantities. We consider the first stage of the process of ultrafiltration, in which no gel is formed on 

the surface of the membrane. Unsteady-state laminar ultrafiltration in a plane channel with one permeable surface 
is described by the equation of convective diffusion, which is represented in the form 

0 ( 0 -  1) + Ou(O- l) + Or(O- l) 
or o~ Or/ 

= 1 0 2 ( 0 -  1) (12) 
2 

Pe Or/ 

with the boundary conditions 

uln= 0 = 0 ;  v [ , l = 0 = -  V ( V = c o n s t ) ;  

1 O0 I  oVO., + b--6e = 0 ; 
r/=O 

O[r/=2h = 1 ; O1r 0 = I ; O[r= 0 = 1. 

(13) 

It should be noted that in the search for a solution of unsteady-state diffusion problem (12) and (13), use 

will be made of the solution of steady-state dynamic problem (10) and (11) found above. This is admissible since 
Pe >> Re, i.e., the process is quasisteady (at a particular moment a steady-state velocity distribution corresponds 
to each instantaneous concentration distribution). 

Equation (12) is integrated with boundary conditions (13) across the diffusion boundary layer. The 
requirements O = 1 and dO~Or~ = 0 at r/--- A ordinarily used in boundary-layer theory are added to these conditions. 

As a result 

o 
o----~f(O - 1) dr/ + f u ( O  - l) dr/ = VF, 

0 0 
(14) 

where F = 1 - (1 - ~o)O. 
The unsteady-state concentration distribution on the membrane is specified proceeding from the solution 

of the steady-state problem. In the case of ultrafiltration the diffusion Peclet number is very high (Pe = 107), and 
therefore, at any point of the channel the thickness of the diffusion boundary layer i's substantially smaller than 

its half-height (h >> A), i.e., it lies in the near-membrane region. Then, in the solution of the diffusion problem 

we can restrict ourselves to the first terms in r/in the velocity distributions (10) and (11). Since in the present work 
pre-gel ultrafiltration is analyzed, in these distributions the terms f / h  and df /Ox  are 0. Thus, for the steady-state 
case the convective-diffusion equation has the form 

) O0 oO 1 020 (15) 
3 1 - I v ~  r / - - -  V - 2 '  

2 O~ Or/ Pe Or/ 

and at 7/--- O, i.e., near the membrane, we have 

0 ( 1 0 0 )  
o-~ V O + ~ e ~  = 0 "  (16) 

Under the specified conditions its solution is 
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O = Oo, (~) ll - ~o (1 - exp ( -  PeVq)) I. (17) 

On the basis of the concept of a boundary layer, the concentration distribution in the channel can be 
represented in the form 

O,,,(~) t l - ~ o ( 1  - e x p ( -  PeVr/)) l ,  0___r/ < A,  (18) 
O =  1, A <~/ < 2h .  

Equating the two expressions for O in (18) at r/ = A, we find the unknown thickness of the diffusion 

boundary  layer: 

1 9,O,~ 
A = ~ In - - - ~ ,  (19) 

where Fo, = 1 - (1 - ~o)Ooj. 
To determine the unknown concentration on the surface of the membrane  O,o(r, ~), the expressions for u, 

O, and A from formulas (10), (17), and (19) are substi tuted into Eq. (14). After calculation of the integrals we 
have 

1 O O o - F o ~ l n  - -  1 + I V~ x 
PeV Or Foj P 2 V  2 ~ - 2 

x %, - G, In - 7 G l n - - ~ )  - 1 = VF(o. (20) 

From the physical point of view the unsteady-sta te  process can be considered as two limiting conditions, 

namely, absolutely uns teady and steady. 
We consider the case of s teady concentration polarization. Then,  it follows from (20) that 

0 ( 1 ) ~,O,o 1 ~O,~] 2 Pe v2r,o (21) 
Ol,~ 1 - ~ V ~  O o j - F a ,  l n - - ~ o  - ~ F ~ ,  ln-p-~--o ) - l - 

It is impossible to integrate this equation in the general form. Therefore,  very important particular cases will be 
analyzed. 

Let V~ << 1 and Ooj - 1. These  conditions are valid for short distances from the inlet to the channel.  The  

quant i ty  Oo, is r e p r e s e n t e d  in the form Ooj = 1 + e, w h e r e  e << 1. T h e n  In 9,O~o = In 9,(1 + e), Foj = In 
~o [1 - e(1 - 9,)/~o ]. The  logarithms are expanded into Taylor  series in powers of e, and restricting ourselves to 
cubic terms of the expansion, we find from formula (21) 

dV~ de2 - 2~~ [ 1 -  e ( 1 ;  ~o)].  (22) 

Ultrafi l trat ion membranes  have high selectivity. With this fact in mind, it is possible to assume that 
e(1 - ~o)/~o << 1. Then,  integrating Eq. (22) with the obvious condition e = 0 at ~ = 0, we arrive at a formula for 

calculation of the concentration on the membrane: 

0~o = 1 + ~o (2Pe2V2V~) l /3  (23) 

In the case in which the terms in Eq. (21) containing logarithms of the concentrat ion are small in 
comparison with the concentration, we have 
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) pe2+ 
d V t  l - V t  ( 0 - 1 )  - - - y -  r . (24) 

Integration with the boundary  condition | = 1 at ~ = 0 gives 

2 2 

3 1 -v,)-  l 
1 2Pe2V2 7' 1 - ~- V~ 

(25) 
0 ~  3 

l - ~o 2Pe2V2 

Analysis of (25) shows that in laminar  ultrafiltration in a plane channel  with one permeable  surface, two 

limiting cases are  possible. The  quanti ty (1 - T) can be small or large in comparison with the combination 

3/(2Pe2V2),  which characterizes the relation between the convective and diffusion mass t ransfer .  

Let 

(1 - ~o) << 3 ( 2 6 )  
2Pe2V 2 �9 

Since in the case of ultrafil tration PeV-- 10 -103 ,  condition (26) implies almost ideal selectivity of the membrane  

(~ ~ i) .  In view of this fact, we obtain 

0,,, = 1 + PeZV2v~  (27) 
I v'r " 3(1- 7 

Thus,  for the present  case the concentration of the dissolved compound increases cont inuously  on the 

membrane with distance from the inlet to the channel. For ideal selectivity of the membrane  (,/9 = 1) Eq. (21) can 

easily be integrated. Its solution is 

_ | 2 PeZV2 V~ (28) 
I ( In  ~o) = 1 + I " O ~ - l n O ~ ~  2- 3 ( I - ~ V ~ )  

A comparison of formulas (27) and (28) shows that at Ooj >> In Ooj (this condition was assumed in the 

derivation of formula (25)) expression (28) becomes (27). 

We consider the case in which 

3 
(1 - ~p) >> 2Pe 2~'W (29) 

Then,  it follows from (25) that 

2 2 

1 1 - T  1 -  i 3 0 ~ -  
1 ~a z - -  ' 

i.e., the concentration of the dissolved compound increases rapidly on the membrane  with the distance from the 

inlet to the channel  and at tains the limit O~o = I / (1  - ~) ,  which remains unchanged over the rest  of the length of 

the channel. 

Now, we turn to the s tudy of absolutely unsteady ultrafiltration. We find from (20) 
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0 ( 7 " 0 , 0 , )  
O V r  O~ - F,oT In ~ -  1 = PeVF,0r. (31) 

It is impossible to obtain the general solution of this equation, and particular cases will be considered.  

For short  times of the unsteady-s ta te  process, it can be assumed that 0,0, - 1. Then,  represent ing O,,,, in 

the form O,0, = 1 + e, expanding the logarithms into Taylor  series in powers of e, and restricting ourselves to the 

initial terms of the expansion,  we arrive at the differential equation 

d e  2 = 29,2peV (1 _ e ( l - 7 ' ) )  (32) 
d V r  7" " 

Assuming e(1 - ~)/~o << 1 and integrating under  the condition e = 0 at z -- 0, we find 

0,0~ = 1 + 7" ~ /2Pe  V V r  . (33) 

At (1 - ~p) << 3 / ( 2 P e 2 V  2) (this is equivalent to the condition 1 -  F~or << 1), we obtain from Eq. (31) 

0`0 r - In 0,0 r = 1 + PeVVr.  (34) 

For long times of the ultrafiltration process or substantial PeV, when O,or >> In O`0r, we have 

0 ` 0 ~  = P e V V r .  (35) 

When (1 - 7") >> 3 / ( 2 P e 2 V  2) and O,0r > >  In O,0r, Eq. (31) has the form 

dO,0t 
OVT - PeVF,0. (36) 

Integrating (36), when O,0r = 1 at r = 0, we find 

1 
O,or - 1 - 7" 11 - exp ( -  (1 - 7") PeVVQ] .  (37) 

In conclusion, we determine the time r s needed to attain s teady-s ta te  operation. From the condit ion (9,0 = 

O~,t and relations (23) and (33) rs at 0 , 0 -  1 follows: 

From formulas  (28) and  (34), (30) and  (37) we obtain Zs for  the cases (1 - 7 ' )  << 3/ (2Pe2V2)  and  

(1 - ~)  >> 3/(2Pe2V2),  respectively: 

PeV~ (39) 

3 

1 
T s = ~ PeV~. (40) 

Thus ,  the suggested theory is valid for the description of laminar ultrafil tration up to the stage of gel 

formation in a plane channel  with one permeable surface. 

The  work was carried out under  project T94-020 of January  27, 1995 of the Fund for Fundamenta l  Research 

of the Republic of Belarus. 
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N O T A T I O N  

= x / h ,  r l -- y / h ,  dimensionless longitudinal and transverse coordinates; u = u / ~  0, v = v'/u0, dimensionless 
components of the velocity hector; h, half-height of the plane channel; ~0, average velocity at the inlet to the 

channel; v,/~, kinematic and dynamic viscosities; Pe = (-fro h ) / D  o, diffusion Peclet number; D, diffusion coefficient; 
0 --- C / C o ,  dimensionless concentration of the dissolved compound; Co, concentration of the dissolved compound 
at the inlet to the channel; Oa,, dimensionless concentration of the dissolved compound on the membrane; V-- 
A 

V/-do,  transmembrane velocity; f, thickness of the diffusion boundary layer; A = f / h ,  dimensionless thickness of 
the diffusion boundary layer; P, pressure in the channel. 
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